Fabrieksautomatisering & robotica

In de geautomatiseerde productie wordt gebruikgemaakt van diverse geïntegreerde actoren en sensoren. De aansluiting van deze componenten en inbedrijfstelling van de installaties moet eenvoudig en snel verlopen. De aandrijfsystemen van FAULHABER zijn eenvoudig te configureren en kunnen middels gestandaardiseerde interfaces makkelijk en veilig worden aangesloten.

Application Highlights


Voor de automobilist die op groen wacht, ziet de drukke kruising midden in de stad er niet anders uit dan op een willekeurige ochtend. Hij weet niet dat hij midden op een bouwplaats staat - of beter gezegd: boven een bouwplaats. Een paar meter onder hem snijdt een felle lichtbundel door het donker, tot schrik van wat er ondergronds leeft. Een camaralens stuurt beelden van natte wanden met scheuren naar boven, waar de operator strak naar zijn monitor kijkt terwijl hij de robot bedient. Het is geen scene uit een science fiction of horror-film, maar dagelijks werk in moderne rioolrenovaties. Voor de camerabediening, de werktuigfuncties en de wielaandrijving worden motoren van FAULHABER gebruikt.


Zippermast – kruising tussen rolmaaten ritssluiting

Een op afstand bestuurbaar rupsbandvoertuig met het formaat van een skelter stopt vlak voor een manshoge muur. Dan schuift hij zijn ingebouwde mast uit waarop een kleine camera gemonteerd is. Ineens heeft hij onbelemmerd zicht op de situatie achter de muur. Dit onbemande verkenningsvoertuig wordt geleverd door het Beierse progenoX. Het geheim: de zeer compacte 'zippermast', die bestaat uit drie staalbanden die met elkaar vertand zijn volgens het ritssluitingsprincipe. Een motor van FAULHABER zorgt ervoor dat deze unieke constructie altijd betrouwbaar in- en uitschuift.


Small parts gripper

New small parts gripper from SCHUNK functions without compressed air A small gripping system that is both quick and powerful – up to now, that was often only possible with pneumatics. Because with compressed air, large amounts of pressure can be conveyed virtually without any time lag. A compressed air supply requires a complex infrastructure, however, and having to provide it for every production step is diffi cult and expensive. Fortunately, this is no longer necessary – thanks to the mechatronics-based EGP 40 from SCHUNK. The new gripper from the leading expert for workholding technology and gripper systems easily achieves the same performance of its pneumatic counterparts. The drive that makes this performance possible is a Brushless DC-Servomotor from FAULHABER.

Industrial robots

Robots explore other planets, produce car parts and vacuum dust and are today almost omnipresent. They do not, however, usually look like the science fiction fan might imagine: they move around as a flat trolley on wheels or are permanently installed as bulky machines in industrial halls. Humanoid robots with eyes and ears, arms and legs are still in their early stages of development. A division of Dongbu Robot is working in this field. As muscles for its mechanical people, the Korean company uses motors from FAULHABER.


CHIMP robot

Their precision and efficiency makes FAULHABER motors ideal for driving robots, which is why we have become a major supplier of the growing robotics industry.


Unmanned Ground Ve­­­hicle

Miniature unmanned ground vehicles reliably perform reconnaissance in the harshest environments, with the help of compact, high-torque servomotors.


MROV (Miniature Remotely Operated Vehicles)

The timely tracking down and disarming of bombs, IEDs, booby traps and other danger­ous munitions from the extremist arsenal is most definitely a job for the professionals. Prior reconnaissance – to avoid calling in the specialists unnecessarily and to ensure a confirmed threat is handled as safely as possible – is an essential element of this process. In this scenario special remotely operated devices can drastically reduce the risk to the human beings involved in such activities, with high-precision micromotors replacing man­power to undertake the necessary hazardous operations at the bomb scene.


Humanoid service robots

Since time immemorial, people have dreamed of creating artificial human beings. Nowadays, modern technology is capable of realizing this dream in the form of the humanoid robot. Even if there is still a considerable amount of ­development work necessary, every project has to take those first steps. As an initial stage in this process, a humanoid service robot that works autonomously already offers a wide range of benefits. Apart from the interaction of the many components used, the main challenge is the power supply and the space required for the various parts. Microdrives ­represent an ideal solution for resolving these two key issues. Their considerable power density, combined with high efficiency and minimal space requirement, improves the power-to-weight ratio and allows the robot to operate for long periods without having to recharge batteries.


Robotic arm

Freely moving arms are a well-established solution when it comes to handling tools within a three-dimensional space, and not just for robots. But most of the solutions available thus far have struggled to overcome the negative interaction between the necessary drive on the rotating axis and the required arm stability. By eliminating the mass from moving parts, the forces of inertia in the arm are reduced. The arm jib is lighter in weight and can work more dynamically, while providing the same level of stability.


Robotic hand

To date, use of robotic hands in industrial production has been restricted to rugged two and three-finger grippers. They are being used for the purpose of executing relatively simple movements. Robotic hands for more delicate tasks have proven unsuccessful due to the lack of available technical capabilities. Positive interaction of microelectronics and micromechanics has now produced the much sought-after break through. Indeed, technological advances within this field are continuously growing. Thus, robotic hands with separately controllable fingers and joints based on human hands are no longer fiction and will probably be available soon on a day-to-day basis within the industrial sector.


Robot Vehicle

Today, mobile robots are often deployed in critical situations that are simply too dangerous for humans to handle – as part of industrial operations, law enforcement or anti-terror measures, e.g. to identify a suspicious object or disarm a bomb. Owing to the extreme circumstances, these "manipulator vehicles" have to meet particular requirements. Exact manoeuvring and precision handling of tools are two essential prerequisites. Of course, the device also has to be kept as small as possible in order to allow access through narrow passageways. Naturally, the drives used for such robots have to be equally impressive. Special high-performance micromotors have become an essential component.


Assembly machines

Today, mass-market electronics are manufactured almost exclusively on high-performance assembly machines. Given the nature of these fast-moving products, time is literally money. Therefore, two aspects are of particular importance for the production equipment deployed within this area: maximum quantities and minimum changeover time. For the manufacturer of such machines this means ensuring the best possible ­output, combined with simple processing in a continuous operation. This requirement can only be fulfilled if the complex operational sequence remains accurate and ­reproducible at all times. An essential component: micromotors with superior functionality and a micro footprint.


Manufacture robotik

The handling of expensive wafers used in high-end chip production is a particularly complex undertaking. It is for this reason that the fabrication of wafers is a predominantly automated process. Etching represents one of many steps in state-of-the-art chip manufacturing. For this, the wafers are placed into a special handling device and clamped for further processing. Electronically commutated micromotors with integrated motion controllers enable safe, maintenance-free operation in three shifts.


Sewer Robot

Thousands of miles of underground pipes are responsible for handling important tasks. They have to operate reliably. Internal inspection and maintenance has so far only been possible where pipe diameters are large. Relatively small sewers do not offer enough space for human beings, and whenever they were damaged the only solution was to expose the affected pipe sections. An expensive undertaking. However, new developments in the field of electronics and motion control engineering now make it possible to inspect and perform maintenance in small sewers - internally. Since in the sewage sector all tools have to meet very high standards of reliability and performance, the drives on such sewer robots have to be extremely robust. Modern bell-type armature DC motors satisfy the exacting requirements for use inside of the pipe system.


Shrimp Vehicle

Modern computer and sensor technology is perfect for fast, reliable data-gathering. Even such inhospitable environments as volcanoes, furnaces and the inner workings of nuclear power stations are no longer a problem. Unfortunately, this technology has always had one disadvantage: its lack of mobility. Until now, investigations of unknown territory have been hampered by the lack of a universal vehicle concept for carrying instrumentation. Areas which are inaccessible to humans nearly always demand vehicles that are extremely manoeuvrable and capable of dealing with difficult terrain. Just a few examples: investigations of mining accidents, searches in inaccessible construction sites, mine detection or even – far surpassing all of these demands – the exploration of other planets. All of these applications call for a high degree of reliability, redundancy and autonomy – all features of the new "Shrimp" vehicle concept.


Belt conveyors

The trend towards ever-smaller ­products is increasing. For this reason, assembly technology equipment is now also operat­ing with ever-smaller components. Belt conveyors just like those that work with standard-sized components are now being offered for transporting high unit loads safely. Optimised to meet the special requirements of transporting small items, in many cases they are the product of choice. Robust materials and durable, maintenance-free components ­guarantee high operational ­functionality over long periods.


Electropneumatic Swivel Unit

In many industrial handling and automation tasks, workpieces or tools have to be rotated into position. This places great demands on swivel units, with requirements spanning everything from high speed and precise movement to powerful operation and low maintenance. In practice, it is difficult to combine these various requirements, since powerful pneumatics fail to reach the necessary positioning accuracy, while compact electric drives lack the required power. A novel combination of both drive concepts is now setting new standards for swivel units.